Source code for mlx_graphs.datasets.movie_lens_100k

import os
import os.path as osp
from typing import Callable, List, Optional

import mlx.core as mx
import numpy as np

from mlx_graphs.data import HeteroGraphData
from mlx_graphs.datasets.dataset import Dataset
from mlx_graphs.datasets.utils import download, extract_archive


[docs] class MovieLens100K(Dataset): """ The MovieLens 100K heterogeneous rating dataset, assembled by GroupLens Research from the `MovieLens web site <https://movielens.org>`__, consisting of movies (1,682 nodes) and users (943 nodes) with 100K ratings between them. User ratings for movies are available as ground truth labels. Features of users and movies are encoded according to the `"Inductive Matrix Completion Based on Graph Neural Networks" <https://arxiv.org/abs/1904.12058>`__ paper. Args: base_dir (str): Directory where to store dataset files. transform (callable, optional): A function/transform that takes in an :obj:`HeteroGraphData` object and returns a transformed version. The data object will be transformed before every access. (default: :obj:`None`) pre_transform (callable, optional): A function/transform that takes in an `HeteroGraphData` object and returns a transformed version. The data object will be transformed before being saved to disk. (default: :obj:`None`) """ file_id = "1ggYlYf2_kTyi7oF9g07oTNn3VDhjl7so" def __init__( self, base_dir: str, transform: Optional[Callable] = None, pre_transform: Optional[Callable] = None, ): super().__init__( name="MovieLens100K", base_dir=base_dir, transform=transform, pre_transform=pre_transform, ) @property def raw_path(self) -> str: return f"{super(self.__class__, self).raw_path}" @property def raw_file_names(self) -> List[str]: return ["u.item", "u.user", "u1.base", "u1.test"] def download(self): url = "https://files.grouplens.org/datasets/movielens/ml-100k.zip" self.data_path = "ml-100k" path = download(url, self.raw_path) extract_archive(path, self.raw_path) os.remove(path) def process(self): data = HeteroGraphData(edge_index_dict={}) self.raw_paths = [ osp.join(f"{self.raw_path}/{self.data_path}", self.raw_file_names[i]) for i in range(len(self.raw_file_names)) ] df = np.loadtxt( self.raw_paths[0], delimiter="|", dtype=str, encoding="ISO-8859-1" ) movie_mapping = {idx: i for i, idx in enumerate(df[:, 0].astype(int))} x = df[:, 6:].astype(float) data.node_features_dict = {"movie": mx.array(x, dtype=mx.float32)} df = np.loadtxt( self.raw_paths[1], delimiter="|", dtype=str, encoding="ISO-8859-1" ) user_mapping = {idx: i for i, idx in enumerate(df[:, 0].astype(int))} age = df[:, 1].astype(float) / df[:, 1].astype(float).max() age = mx.array(age, mx.float32).reshape(-1, 1) gender = np.eye(np.unique(df[:, 2]).size)[ np.unique(df[:, 2], return_inverse=True)[1] ] gender = mx.array(gender, mx.float32) occupation = np.eye(np.unique(df[:, 3]).size)[ np.unique(df[:, 3], return_inverse=True)[1] ] occupation = mx.array(occupation, mx.float32) data.node_features_dict["user"] = mx.concatenate( [age, gender, occupation], axis=-1 ) df = np.loadtxt(self.raw_paths[2], delimiter="\t") src = [user_mapping[idx] for idx in df[:, 0]] dst = [movie_mapping[idx] for idx in df[:, 1]] edge_index = mx.array([src, dst], mx.int64) data.edge_index_dict[("user", "rates", "movie")] = edge_index rating = mx.array(df[:, 2], dtype=mx.int64) data.user_rates_movie_rating = rating time = mx.array(df[:, 3], dtype=mx.int64) data.user_rates_movie_time = time data.edge_index_dict[("movie", "rated_by", "user")] = mx.array( [dst, src], mx.int64 ) data.movie_rated_by_user_time = time df = np.loadtxt(self.raw_paths[3], delimiter="\t") src = [user_mapping[idx] for idx in df[:, 0]] dst = [movie_mapping[idx] for idx in df[:, 1]] edge_label_index = mx.array([src, dst], mx.int64) data.edge_labels_index_dict = {} data.edge_labels_index_dict[("user", "rates", "movie")] = edge_label_index edge_label = mx.array(df[:, 2], mx.float32) data.edge_labels_dict = {} data.edge_labels_dict[("user", "rates", "movie")] = edge_label if self.pre_transform is not None: data = self.pre_transform(data) self.graphs = [data]